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A VECTOR STUDY OF LINEARIZED SUPERSONIC FLow

APPLICATIONS TO NONPLANAR PROBLEMS 1 .

By JOHNC. MARTIN ‘ “

SUMMARY

A VeCIOr8hLdY Of h partiddi$erentid eQUdiO?L Of 8.?.eudy
li~arized 8uper80ni.c$OW h prwnl.ed. Qeneral expwti,
which relate the velociiypotential in the stream to the cwndihlma
on the disturbing surfacea, are derived. In connection with
theze general expre+whw the c0nc4pt of the jinfite part of ,an
integral is discussed.

A di.scwnin of probkm8 deali~ with planar bodies is given
and the condittiy for the 8olution to be unique are int%stigakd.

Probkm8 CO?lC8T?Lhgnonphar 8y8tem8 are inV&@a&?d, a?d
methaok are derived for th 8olution of 8ome 8imple nunplanar
bodiec. The SUT@X preiwure db?.ributiz-n and the dampimj in
roU are found for Tolling tuilc COn.8i9tingof four, ti, and eight
rechwqular$ru for the Mach number range where the r~”on of
h!erference between adjacent$w does not a$ect h$n iip8.

INTRODUCTION

In the presentation of the theory of the flow of an idealized
incompressible fluid, vector methods can be used to reduce
greatly the mathematical manipulations involved. The
study of steady linearized supersonic flosv may also be aided
by the use of vector methods. Two types of approaches,
however, can be used. Perhaps the more obvious is to make
use of common vector methods as was done in referenee 1.
The other vector method, which was introduced by Robinson
in reference 2 and is used in this report, appeam to be more
suited to the study of the linearized partkd-differential equa-
tion of steady supersonic flow. Th.ismetiod allows a deriva-

tion of a hyperbolic scalar potential and a hyperbolic vector
potential along lines analogous to the derivation sometimes
used (ref. 3, ch. VIII) in dealing with common scalar and
vector potentials.

The present report presents a vector derivation of many
generrd results which have been found by various methods
and are given in the published literature on the linearized
partial-differential equation of supersonic flow and also
presents some results which are not found in the literature.
The general results of Hadanmrd (ref. 4, p. 207), Puckett
(ref. 5), and Heaslet and Lomax (ref. 6) are found aa speoia!l
cases of a general expression for a scalar potential, and the
results found by Robinson (ref. 2) are obtained by the use
of a vector potential. The derivation of the scalar potential
doubtlessly helps to clarify the concept of the finite part .of
rm integral.

A discussion of problems dealing with planar bodies im-
memed in a supersonic flow is given, and the conditions
necessary for the sclution to be unique are investigated.

Problems dealing with nonplanar systems are also dis-
cussed, and methods are derived for the solution of some
simple problems dealing ti”ti nonplanar bodies. The surface
pressure distribution, the spamviseIoading, and the damping
in roll are found for rolling tails consisting of four, six, and
eight rectangular fins for the Mach number range where the
region of interference between adjacent fins does not affect
the ih tips.
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SYMBOLS”

hyperbolic vecter pottmtial
aspect ratio of tail fin
positive ccnstsat
arbitrary constants
chord
arbitrary vector functions
scalar function defied by equation (19)
vector function associated with vector

function F
vorticity vector
span of tail fin
unit vectors in x-, y-, and z-directiow

respectively
Mach number
unit vector normal to element of area da

nh= —i19%1-Fjva+- kvs
nhf = — i@%lf+ jvaf +- kvs’
nh*= — i&vl*+-jvz*+-kb*
Acp preawredifference coefficient

P rate of roll
Q function used in equation of surface of

diswmtintity
!7 part of veloci~ vector which is made up of

hyperbolic curl of vector potential
!7’ - total perturbation velocity -

R= J(Z–O’-I?YY-;Y–BIZ–O’
R’ small constant

T= J(z—g)g+&@—q)~+ &(z—r)2 “
S’ area oftail iin
8, surfaea of discontinuity
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surfaces of integration

hw-stream veloci~
volumes of integrat+n

Carte9ian coordinates (z-&s parallel to
free-strewn direction)” -

spsmvisa circulation

(s
T. E.

2
J

v ‘F-E-
& dz=% , E Af& dz

L. E. . . )
smfdl positive quantity
Cartesisn c00rdinate9 (f-ask parallel to

free-stream direction)
polar coordinate
s& functions
given volume
direction cosine9 of outward normal to

elemant of area da
direction cosines of normal (directed away

from point (z,y,z)) to surface So
direction cosines of normal to element of

area da used in equation (45)
slope of deflected area
area of integration
scalar potentials
rolling-moment coefficient per h,

Rolling moment per fin

:“pyw;

r acl 7

l---J‘l.= aP(b/2)
Vp-.a

0“ indicates integration over closed line 6r
J surface
f

J denotes finite part of integral

THEORY ,

This report deals with the linearized partial-diilerentisl
equation of steadY supersonic flow. This equation is given
by

–Fw&+%++.=o (1)

The potential is assumed to be continuous in the stream
direction, and the potential is assumed to be always finite.
Assuming the potential to be finite and continuous in the
stream direction hss the effect of requiring the aerodymunic
lift and moment (calculated by use of the linearized pressure)
of iinitp bodies to be finite since the Iimmrized presw.weis
related to the derivative of the potentiaI in the stream
direction. The eqmssion “linewized pressure” refers to-the
pressureobtainedbyneglecting allpowers of the perturbation-
veloci~ components abtwe the first.

VECTOR OPERATOREAND IDENIlTIJ3S

Certain operatirs, which are closely associated with the
linearized hfierbolic partial-differential equation of supw-
SOnicflow (the two-dimensional wave equation), aro added
to the vector operatcm commonly used. The basic operntore
have been used previously in references 2 and 7.

The gradient operator is defined by

The ~alogous hyperbolic gradient operator defhd by
Robinson in reference 2 may be repressed as

The hy@rbolic divergence of an arbitrary vector E is given by

Vh.E

Similarly, the hyperbolic curl of the vector E h given by

VhxE.

The divergence of the gradient operator is s;metimes denoted
by

The analogous divergence of the hyperbolic gradient operator
is denoted by

W’h=V.Vh=-/3’~+~ad 2W’+$

The following identities are needed. Let E be a voctorand
# and A be scalar $mctions -of r, y, and z. Then, ‘

v.#E=#v.E+E.v# (2b]

VX(VXE)=V(V.E)-PE (2C)

V.(vxll’)=o (2d)

Vh@VA=VhA.V# (20)

. Vh.#E=#Vh.E+E.Vh# (2f)

VX(VhXE)=Vh(V.E) -PhE (2g)

VhX(VXE)=V(Vh.E) -vhE (211)

Vh. (VhXE)=O (2i)

These identities can be proved by direct expansion.
The divergence theorem may be eqressed as

$Enda=PEdv
(3)
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where n is the normal unit vector to the element of area da. ”
The vector n is eXpressedmathematically az

n= ivl+ jv2+ ku~

whore VI,v1,rmd V3are the direction cosines of the outward
drrwn normal to the element of area da.

A theorem more general than the divergence theorem is
given by (this theorem follows from the results of ref. 8, p.
87)

$ (C, vIE.+ CMEV+ @,E,)da

where the subscripts X, y, and z refer to components of the
vector E, and Cl, Cz, and G are arbitrary constants. Note
that if Cl= CZ= Cs= 1 the preceding equation reduces to
equation (3). If \

C,=–p a

ci/=c3=l

the preceding equation reduces to

or

4E”n’b=P”Ed’

where
tih= —if?%l+jvs+kv~

If the divergence theorem as ezprwed
is applied to a volume throughout which

v.E=o

(4)

by equation (3)

then the surface integral over the bounding surface is

$
E-n da=O

provided that no surfaces tit inside the volume of integra-
tion acrosswhich the normal component of E is discontinuous.
Similarly, if equation (4) is applied to a volume throughout
which

Vh.E=O

then the surface integral over the bounding surface is

$
E.nb da=O

provided that there are no surfaces inside the volume of
integration across which E.nh is discontinuous. It is in-

teresting to note, however, that surfaces exist tilde the
volume of integration across which E.n can be discontinuous
while at the same time E.nh remains continuous. It follows
that for such a surface n and nh must satisfy the relation

n.nh=O (5)

Let Q(z,y,z) =0 be the equation of such Q surface. Then,
1

n= VQ
IIQ2’+QV’+QZ2

and

where the subscripts indicate differentiation. Substituting
the preceding expressionsfor n and n. into equation (5) yields

(6)

Any solution of equation (6) set equal to zero is the equation
of a surface across which V.E may be discontinuous while
V~.E remains continuous. The fact that the Mach cone
from any arbitr~ point satisfies equation (6) can be easily
verifbd. The equation of the envelope of theMach cones from
an arbitrary line also satizk equation (6) (ref. 9, p. 106).

\
RiNITE PART OF INTEGRALSWHICH ARISE “

IN STEADY SUPERSONICPLOW

In the following sections use iz made of the concept of the
finite part of an iniin.iteinteggal. This concept was intro-
duced by Hadamard (ref. 4) and has been used by a number
of other investigators. The concept of the finite part is,
however, sometimes confusing. This section was therefore
included in an attempt to give a realistic picture of the
finite-part concept and also to present the&t steps of the
derivation of the scalar and vector potentials.

The concept of the finite part of double integrals as
defied by Hadamard and used in this report is diflerent
from the concept of the finite part of double integrals” az
defined in reference 10. The essential difference between
these two definitions lies in the manner in which the singular
points along the lMach cone are treated.

In reference 3, page 183, a vector function is used in the
derivation of the common scalar and vector potentials.
The analogous vector function based on equation (1) is

‘ w=+v$il-q’Jv +
where

R=J(w–g)’–/Fq)-p( z-~)z-~)’ -

The hyperbolic divergence of vector W with respect to
variables & q, and ~ is given by

.
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.

The preceding equation indicaks that the hyperbolic diver-
gence of the vector W’ set equal to zero yields the partial-
differential equation of linearized supersonic flow. A
mathematical derivation of W can be obtained; however,
for the purposes of this report such a “derivation is not
needed.

The result of applying equation (4) to the vector W is

When @ satisfiea equation (1) throughout the volume of
integration, the rightihand side of equation (7) is zero;
thus,

(8)

when
W@=o

Equation (7) @ app~ed to a volume (denoted-by o,)
enclosed in the forward Mach cone from the point (w,z).
This vohune is bounded by tie surface given by R=R’,
where R’ is a small constant, and an arbitrary surface 81
enclosed in tie forward Mach cone from the point (z,y,z).
A cross section of the ‘region of integration is shown in
figure 1. N@e that this region is analogous to the region
that is sometimes used in calculating the potential function
satisfying Laplace’s equation (ref. 3, pp. 151–153). For
regions such as the one shown in figure 1, equation (7) mqy
be written as

. J,0*v%f#J0?0(9)

Fmum 1.—Go= section of the region of integrationueed in connection
with eguation (9).

where T represents tie area of integration when R=Rf.
The integralover the area T may be reduced to

where r is given by

f-=J(w--.f)*3/yyy 7#y+y9qzqf)2)2

Since R’ is a constant, equation (10) can be written w

1
H

V+ n,+fi da
El’ T )

Equation (9) can now be written as

(lo)

(11)

(12)

If # is required to satisfy the linearized parti&differential
equation of steady supersonic flow, then

and equation (12) reduces to

+ T “nb+~)da+~.i+v’-’v;)n“3)H
If R’ is made smaller and smaller the integrand of the integral
over the area Tin equation (13) remains iin.iteexcept.on the
small area close to the point (z,y,z). In anticipation of tak-
ing the limit of equation (13) as R’ approaches zero, the small
area close to the point (z,y,z) is removed from the area T.
The area T is divided into two parta. One part is the area of
T which is downstream of the surface given by

where eis smallbut larger than R’. This area is denoted by r.
The remai&ng part of T (denoted by T’) is the area of T
which is upstream of the surface

A cross section of the region of integration with T divided
into r and T’ is shown in figure 2. Equation (13) qn’ now bo
expressed as .

where R’ is smaller than e.
Since @ is continuous and therefore its values over r are

approximately constant for small values of C, the integral
over the area r can be written as

J B%(z,Y,z) da& V+nh da+ R, J,7 , (16)
r.
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Fmum 2.—Crose8eotion of the region of integration umd in connection
with equation (14).

When the second integral of expression (15) is integrated,
equation (14) becomes

(16)

If R’ is made to approach zero, equation (16) applies even
to the limit where R’ is zero.

The limit of equation (16) as R’ approaches zero may be
written as

The integmnds of the integds over the areas T and T’ are
always finite and it can be shown that their tit derivaihs
with respect to Rf approach zero as R1 approaches zero; there-
fore, the product of l/R’ and these integrals either approaches
zero in at least the order of R’ or approaches iniinity as R’
approaches zero. Thus it follows that the integrals over the
areas r and Tr have no iinite terms remaining after the limit
(R’+ 0) has been taken. The sum of the terms of equation
(17) must be zero; thus the singularities resulting from the
integrals over the areas r and T’ must cancel the singularities
which arise from the integral over the area S’1.

From the preceding considerations it follows that one
method of evaluating the finite part of infinite integrals of the
type appearing in equation (17) is to evaluate the integral
when R’ is small but not zero and neglect the terms multi-

3~100G_G&54

plied by powem of l/R’. Other iniinite integrals sometimes
arise, however, for which the finite part cannot be obtained
by neglecting powers of l/R’. For example, if equation (17)
is difhrentiated with rwpect to one of the variables (z, y, or z)
an equation containing the velocity component is obtained.
In some cases, when the point (z,y,z) lies on the surface SI
the infinite terms are of the order (ln R’)/R’ and of the orders
(l/R’)n. In these cases, the finite part of the intin.iteintegrals
can be obtained by evaluating the integrals when R’ is smaU
and neglecting the terms multiplied by powers of l/R’ and
(k R’)JR’.

The process of removing the infinite parts of an integral,
however, has been derived by Hadamard (ref. 4, book III,
oh. I). Hadamard used his methods of evaluating the finite
part of integrals in finding solutions to certain hyperbolic
equations including the linearized equation of steady super-
sonic flow. Perhaps a fact worth noting is that the integrals
of equation (17) are double integrals and when the methods
@ven by Hadamard are used the methods given for multiple
integrals should be used. In the past, the singular pointa
(points on the Mach cone where the derivative of
(z–f)’–/Yq)qP’–P’f) –f)’ with respect’ to the variable
of integration is zero) have caused some cotilon; as
Hadanmrd points out (ref. 4, p. 147), these singular points
must be removed from the area of integration before the
finite part is t3ken. Particukw attention should be given to
paragraph 92 of reference 4 since the special type of integrals
discussed therein sometimes arises in dealing with planar
problems.

Robinson (ref. 2) has shown that when using Hadamard’s
methods the order of integration may be changed without
affecting the finite part and that it is permissible to differen-
tiate under the integral sign of a multiple integral without
considering the variable limits which lie along the boundary
where the integrand is singular, provided that only the ii.nite
part is taken. Both Hadsmmd and Robinson have shown
that in differentiating an improper integral which has an
integrand that has a one-half power singularity along
variable limits the variable limits may be neglected provided
the finite part of the resulting integral is taken.

The term ‘%nite part” ‘is somewhat misleading since the
finite part of an integral can be inlinite. In certain cases the
integral is in6nite even after the terms which approach
iniinity as R’ approaches zero have been neglected.

SCALARPoTBmUI#

The preceding arguments show that the fite parta of
equation (17) can be equated to zero; thus,

J(—2@(z,y,z)+f *, ~
)

1VW; . n, da=O

where the symbol j before the integral denotes that only the
tite part is to be taken. The preceding equation may be
solved for the value of the potential at the point (z,v,z);
the rw.dt of this operation is given by

It should be remembered that surfaces can exist inside the
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forward Mach cone from the point (z,g,z)” across

&~ w+ can be discontinuous and across
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Which

which

Equation (18) is an expression for the scalar potential at
the point (z,y,e) in terms of the potential and its derivatives
with respect to nh on the surface S1. A more general
expression for the scalar potential than that given by
equation (18) can be obtained. If within the volume
enclosed by the forward Mach cone from the point (z,y,z)
and the surface SI equation (1) is not satisfied and v%
operating upon + yields

Vw(.s%r) =+(’hr) (19)

then equation (10) becomes

Provided that f(f,q,~) is always iinite, the right-hand side of
equation (20) is iinite; furthermore, the right-hand side of

. equation (20) remains iin.ite as R’ approaches zero. If in
equation (20) R’ is made to approach zero and only the finite
parts of the integrals are retained, then the resulting expres-
sion is

(21)

where 01represents the volume O.when R~ is equal to zero.
Equation (21) is equation (58) of reference 4 where /32has
been set equal to one. Note that the volume integral in
equation (21) has the appemance of the integral for the
potential resulting from a volume distribution of sources
in an incompressible flow.

The assumption has been made that @ is continuous
throughout the volume 01. It is also awmmed that no
surfaces exist inside 01across which bdfb% is discontinuous.
If equation (21) is applied to a volume%, which has surfaces
across which $ andfor the derivative of 4 in the direction
bf nh k dkcontinuo~, th~e s~f~ of ti~ntinti~ @
be removed from the volume of integration by allowing the
arbitrary surface SI to envelop them (see &. 3). For vol-
umes of integration where the surfaces of discontinuity
have been removed in this manner, the scalar poteutial.
can be written as

where ,SOdenotes the surface of discontinuity, and Ad is
the potential diilerence across the surface i%. The notation
b/@h’ is used tcidenote the operator

For the cases where no surface of discontinuity exists
inside the volume U1and @ and V4 are zero on the s~faco
S1–S0, equation (22) reduces to

(23)

tim equation (19)

V%$fl(z,y,z)=j(z,~,z) (24)

Note fiat equation (23) is a solution of the partiahlifferontial
equation (24).

For most problems in linearized supersonic flow, f(ht)
is zero and d is zero upstream of the disturbing body. For
such problems, the surf&ceS1-SO can be taken to be located
upstream of th~ disturbing body where 4 and V@ are zmo.
In this case, equation (22) reduces to

, H ~A—d(z,y,z)=+ r SO R :h,
)

~~ da4–A4 ~,, R (26)

If the surface So is confined to the t=O plane, equation (26)
reduces to equation (10) of reference 6. In this reference
the boundary conditions for airfoils are discussed.

cOMPONENTS OF VECTOR F’IELn

Let F be a vector which is tite and integrable in a given
volume (denoted by k) apd is zero outside the volume L
To each point in the volume associate the vector

J
W,q,t) dgG(z,y,z)= R

b
(26)

where % denotes the part of the volume A enclosed in the
forward Mach cone from the point (z,y,z).

From equations (24) and (26), it follows that each cem-
ponent of G satides the relation

V%Q&y,z) = –2~F4 (Z,y,z) (27)

where the subscript i refers to any component of the vector
field.

Let x&c,y,z) be a scalar and A(z,y,z) be a vector deiined
by the equations

J
2~O~Vh.G=’ F(&~,~) .Vh ~ JU (28)

*
and

J2rA4x G=f FU,V,t)Xv ; dv (q%

Equation (2h) indicates that

vhx(Vx G)= V(Vh.G)-WhG (30)
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FImmI 3.—A cross section of the region in the forward Ma& cone
from the point (z,v,s) showing the surface L%enveloping a surface
of dkcontinuity SI.

Substituting the expressions for VX G, Vh. G, and WhG
as given by equations (27), (28), and (29), respectively, into
equation (3o) and solving for F yields

l’(x,y, z)= –V~O(z,y, z) +VhX~(~,y> z) (31)

Since F is an arbitrary vector, equation (3I.) indicates that
any finite integrable vector field can be expressed in terms
of the gradient of a scalar and the hyperbolic curl of a vector.
Equ~tion (31) has the appemce of the Hehnholtz theorem
(ref. 3, p. 187); however, since ~0 and A are found by inte-
gration only in the forward Mach cone from the point
(z,y, z), equation (31) hardly seems to be a statement of
the Hehnholtz theorem as is commonly given. The result
given by equation (31) waa obtained by Robinson in
reference 2.

HYPEllBOLICVECTORPOTE~

Equution (31) indicate-s that the perturbation velocity
vector can be divided into two parts. One part is the
gradient of a scalar function, and the other is the hyperbolic
curl of a vector function. The vector-function is analogous
to the common vector potential (ref. 3, pp. 104 and 188);
therefore, the vector function is refe~ed to as the hyperbolic
vector potential. Thus, if q’ is the total perturbation
velocity vector, then

q’=V++VhxA (32)

where @ is the scalar potential and A is the hyperbolic vector
potential. The part of the velocity vector which is made up
of the hyperbolic curl of the vector potential is denoted by q.

By direct expansion it can be shown that

Vh.q’=VhW$+Vh.(vhXA) =W@+Vh. (VhxA)=O (33)

Equation (33) indicates that tke hyperbolic divergence of
the perturbation velocity vector is zero.

The vorticity vector is given by

Il=vxq’

Therefore, from e~uation (32),

(34)

H=VX (VhXA) .
or

H= Vh(V.A)–WhA

From equations (2d) and (29), the divergence of the hyper-
bolic vector potential is zero; thus,

H= –FhA (35)

Each component of equation (35) is a partiaklifkrential
equation of the form of equation (24); thus, from equation
(23) each component of equation @5) has a solution given by

(36)

where the subscript i refers to any component of the vector
H. Since each component of A is given by equation (36),
then

“ (37)

The velocity vector resulting from the hyperbolic vector
potential is therefore given by

.Sq=vhx&~f
2T q

VhX; do (38)

or

J
62 * (y– q)~.-$ f)Hii ~Q

u=—
2r q

(39a)

where the subscripts refer to the components of the vec.$or
H. The results given by equations (39) were obtained by
Robinson in reference 2.

VORTEXSERBW3

If the vorticity is confined to a surface S%,equation (37)
becomes

(40)

Equation (4o) is an expression for the hyperbolic vector
potential :~ulting from a surface of vorticity. Note &at
if the vorticlty is zero except on the surface Sz, then equation
(35) reduce9 to

VhA=O

By removing the surface S* from the volume of integration
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each component of A can be expressed as (from eq. (25))

where the subscript i refers to any component of the vector
A. Since each component of A k“given by equation (41),
then

Note that if AA is zero, equation (42) reduces to

(43)

By comparing equations (40) and (43) it follows that, on the
surface iYg,

(44)

Equation (44) indicates that across a surface of vorticity
the derivative of the hyperbolic vector potential in the di-
rection of nh’ is discontinuous. Thus, a lift@g surface can
be repreaentad by a continuous hyperbolic vector potential,
while it can be shown that a thickness effect can be repre-
sented by a discontinuous hyperbolic vector potential
Note the contrast with the scalar potential, which uses a
continuous potential tQ represent a thickness effect and “a
discontinuous potential to represent a lifting surface.

FURTHRRDEVELOPMENTOF SCALARPOTENTIAL

The scalar potential can be expressed in forms other than
those already presented. Equation (8) is applied to lhe
region bounded by the arbitmry surface & the forward
Mach cone from the point (z,y,z), and a second arbitrary
surface S’senclosed in the forward Mach cone from the point
(z,y,z) and upstieam of the surface 5’,. A crosssectionof
such a region is shown in figure 4. The result of applying
equation (8) to this region is

(45)

provided that ~’ is a solution of equation (l). Note that the
scalar potential as given by equation (18) is independent of
d’ so that+’ is arbitrag- so long as it satisfies equation (1)
throughout the proper volume. .

If for a finite distance upstream d’ is zero and remains zero
for greater distances ups&am, the surface S3maybe chosen
in this region so that the integral over S8in equation (45) is
zero; thus,

Equations (18) and (46) can be combti”ed to yield

(47)

<

(Ax<)

RsO

SI S3..

x

l?rc+umx4.—Cro.R3section of the region of integration,used in connection
with the potentii function .$’.

The only restrictions pl~ced on d’ at this point are that it
satisfy equation (1) and be zeho at a iinite distance upstreom,

In many cases 4’ maybe chosen so that ~–$$ or @ –4’

is zero; therefore, in these cases, @ can be expressed as

or

Equations (48) are quite useful; however, reme~ber thot
they apply only when ~’ can be chosen so that d’ does not
violate any of its restrictions.

Note that equations (48) can be applied to problems whore
either @or bf#@%h is given on the surface S1. The application
of these equations to most nonplanar problems of either type,
however, lead to quite unwieldy integral equations.

APPLICATIONS

PLANARPROBLEMS

Many problems in linearized supersonic flow deal with the
surface of discontinuity confined to a plane surface parallel
ta the z-axis. In this section a gener,al discussion of this
type of problam is given. The coordinates are located so
that the surface of discontinuity is in the r=O plane.

The scalar potential at an arbitrary point (z,y,z) above the
~=0 plane is (from eq. (47))

(49)

In this case, the surface SI is the ~=0 plane.
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If o’(z,v,O) is chosen equal to 4(z,v,0) the potenti~ bemm~
symmetric with respect to the r=O plane. Thus, for z=a

+(z,y,a) =+’(z,y,–a)
md

##(W,~)= –4%’ (W,-~)

For this case, equation (49) reduces to

(50)

Equation (50) was given by Puckett in reference 5.
If 1#1’(z,y;O)is chosen equal to –+(z,y,O) the potential

becomes antisymmetric with respect to the {=0 plane. In
this Cnse, .

d(x,y,a) = —$5’(z)y,-a)
and

dz(%y,~)= +s’(W,-~)

Thus, equrdion (49) is reduced to

(51)

Note that for surface S, not confined to a plane parallel to the
z-axis, a choice of d’ (z,v,z) at the surface Sl to equal +(x,Y,z)

b~(z,~jz) at the surface SI to equ”alat S1 does not cause ?Mh
~+’(%v)z) at & siwly, choos~ # (Z,7J,Z)at tie surface—

Zm~*
bd’(~,q,z) at ~, ~S1 equal to —~(x,y,z) at SI does not cause ~nfix

WWF) at&equal an
Provided the discontinuities are r~tricted to the t=O

plane, the scalar potential can also be expressed as follows
(from eq. (18)):

u4(%?/)4=-+f ~1 “z d: dq
+.(tjyo++(:,;,o)~ 1

(52)

for,positive z. A comparison of equations (5o) and (51) with
equation (52) shows that the two terms of the integrand of
equation (52) contribute equal amounts to the potential at
any point (z,y,z).

Since the terms of the integrand of equation (52) contribute
equal amounts to the potential at the point (z,y,z) as z
approaches zero, equation (52) must reduce to

Tho preceding equation can also be obtained by examining
the limit of equation (62) as z approaches zero. If this
mocedure is done the entire contribution of the second term
A

of the integrand of equation (52) is found to come from the
point at the apex of the hyperbola formed by the intersection
of the Mach cone from the point (z,y,z) and the {= O plane.
Note that if the integration is performed first with respect to
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uthen, when the methods of Hadamard am used, the point at
the apex of the hyperbola is a singular point and must be
removed from the area of integration by a process such as is
$+m in reference 4, page 147.

If +’ is prescribed’ over the r=O plane, then the potential
isgiven uniquely by equation (5o). Similarly, if the potential
isprescribed over the ~=0 plane, @en the derivative of @with
respect to z is determined over the z= Oplane. This result
follows from equation (51) since prescribing 1#1over the z=O
plane determines the potentials in the space above the z=O
plane; therefore, it also determines &in the space above the
z= Oplane and the limit of 4. as z approaches zero from the
positive direction.

The question that arises is whether I#J(z,q,z)is uniquely
determined in the space above the z=O plane if 4 is prescribed
over certain areas of the z=.O plane and +. is prescribed over
the remaining areas.. If the assumption is made that @ is
not dettied uniquely, then at least two potential functions
satisfy the condition that either @ or +Sis prescribed in all
regions on the z= O plane and that @ is identically zero
upstream of a given point. Let & and h denote two poten-
tial functions which satisfy the same boundary conditions,
and let h denote the potential function formed by taking the
difference between dl and ~. Mathamaticslly, the potential
function his given by

d&Y,z) =+1(%42) –4Z(W,Z) (53)

Since & and& have the same values in certain regions in the
z=O plane then & is zero in these regions. Similarly, since
&$@z and W@z have the same values “in the remaining
regions of the z= Oplane, then W@z is zero in these remain-
ing regions. The potential function & has the boundaxy
conditions that either h or W@z is zero in all regions of the
z= Oplane and that &is identically zero upstream of a given
point.

Consider the case where all the boundaries between the
regions are supersonic. (The slopes of the boundaries are
such that the mmponent of the free stream perpendicular
to the boundary is always supemonic.). The potential
function h can be evaluated by use of equation (5o) or (51)
for points in areas which are far enough upstream to be
affected only by a region where @or&is prescribed. For all
points in these areas&is zero as indicated by equation (5o)
or (51). It follows from equations (5o) and (51) that his
also zero inside the volume above the z=O plane, which is
Mected by these areas alone. Thus, the volume where &

‘is identically zero has been moved downstream. The same
argument can be repeated until the complete z=O plane has
been covered. The preceding arguments cannot be applied
to caseswhere the regiom have subsonic boundaries; however,
ifitisp ermissible to distort the boundaries within a strip of
infinitesimal width these subsonic edges can be converted
into supemonic edges by replacing eveg element of the
subsonic boundaries by a broken line made up of supersonic
segments. Such a procedure is illustrated in &ure 5. If
the assumption is made that the subsonic boundaries maybe
distorted an infinitwimal amount, then h is zero over the
z=O plane and also in the space above the z=O plane.
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“Ab!r
(a) Subsonic element within (b) Broken line replacing

inilnitesimal strip. line element.

FKHJBE 5.—An illustration of a method of replacing a subsmio line
element with a broken line made up of supersonic segments.

Equation (53) now reduces to .

*(z,’yjz) =&(z,y,z)

Site d, and& are any two potential functions with the same
values in certain regions of the z= Oplane and with the same
partial derivatives with respect to 2 in the remaining regions,
proof has been given that only one potential function exists
for which the potential is prescribed over certain areas in the
z= O plane and the partial derivative with respect to z is
prescribed over the remaining arms.

The boundary conditions for a zero-diclmess lifting airfoil
with a given local angle-of-attack distribution are not of the
type discussed in the preceding paragraph. The conditions
prescribed in the z=O plane for this type of problem are:
The potential function @ is identically zero upstream of the
airfoil; @@,y,O) is zero except on the plan form or in the
wake; the partial derivative of the potential with respect to
z, 1#1.,is given on the plan form; and 4.(z,Y,O) is zero in the
wake. The preceding boundary conditions do not specify
that @ or d. be prescribed in all reggons on the z=O plane
since not @ but I#JZis given in the-wake. For airfoils which
have trailing edges which are always supersonic, the require-
ment that @ be continuous in the stream direction necessi-
tates the potential in the wake to have the value of the
potential at the bailing edge of the airfoil. In this case, the
potential’ function is uniquely determined. For airfoils
which have subsonic hailing edges the Kutta~oukowski
condition is generally applied to the trailing edges to detar-
mine + uniquely. If the aemmption is made that the trail:
~g edge ~ be dis~rted titi a S* of titwim~ tidti,
then the requirement that @ be continuous in the stream
direction can be used to determine 1#1uniquely. If the as=
sumption is made that tie subsom-ctrading edge is distorted
within the infinitesimal strip so that each segment of each’
line element of the trailing edge is always superecnic (see
fig. 6), then @ is deterp-ined uniquely. It is md.1-lmown
that for airfoils with subsonic hailing edgea there are an
in.6nite number of solutions which satisfy the boundary
conditions as stated at the beginning of this paragraph. The
preceding arguments however prove that there is but one
solution for an airfoil which has had its subsonic edge re-
placed by broken lines which are always supersonic. Note
that it has not been proved that the solution obtained by
distorting the subsonic trailirg edges corresponds to the

(cl) (ti

‘A ~.---Dsloded
/ trolling @e

.

(c)

(a) Wing with subsonio edge. (b) Line element at a break
in a subsonio trailing edge.

(c) Potible distortion of a subsonio trailing edge at a break in
that edge.

FIW&E 6.—Methods of distorting a subsonio trailing edge to determine
the potential function uniquely.

,
s@tion satisfying & Kutta~oukowaki condition, nor has
it been proved that the solution of the distorted trailing edge
is independent of the manner of distortion.

NONPLANARPROBLBMS

The scalarpotential ~esultingfrom the disturbances caused
by a nonplanar body can be found from equation (18)
provided that both 4 and b@% are known on some surface
S1. Unfortunately, @ and ?h@nh are not generally known
on a surface which fills the requirement of the surface S1;
therefore, equation (18) appeam to have little value in the
calculation of the potential functions for nonphumr systems
in general. Certain properties of equation (18) are, howevor,
worth investigating.

The problem of evaluating the potential on the upper sur-
facea of a long rectangular body is discussed. The assump-
tion is made that the body extends upstream to infinity and
tiat the sides are parallel to the free-stream direction except
for small local variations which cause small disturbances in
the stream. Figure 7 (a) shows the forward Mach cone from
a point on the upper surface of such a rectangyhm body.
This figure also shows that there is a certain part of the sur-
face of the rectangular body in the forward Mach cone from
the point (z,y,z) that cannot possibly affect the potential at
the point (z,y,z). If the surface S, in equation (18) is
taken to be the surface of the rectangular body, then equation
(18) indicates that the vahma of@ and b@n~ in the region
which cannot possibly affect the potential at the point
(z,v,z) should be used, in evaluating the potential at the
point (z,y,z). The only possible esplmmtion of this con-
sideration is that the integgal of @ and b@/tih caused by the
disturbances in the “blind spot” add to zero. This con-
sideration ean be shown mathematically as follows. Lot to
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denote the potential function resulting from the disturbances
inside the blind spot. From equation (46), it follows that

(54)

Equation (54) indic~tes that the pot.antitd at the point
(z,Y,z) can be evaluated by applying equdtion (18) to the
surface of the rectangular body regardless of the blind spots.
The same mgument holds for other bodies with blind spots.

The preceding arguments can be clarified by a simple
illustration of the effect of a blind spot. Consider an infinite
rectangular body such as shown in figure 7 where the only
dkturbrmces me caused by a small deflected area with a
constant slope u with re9pect to the ~ee-stream direction
located on the lower surface of the body. The leading edge
of the deflected area is chosen perpendicular to the &ee-
stream direction so that the potential in the region not
affected by the vertical sides is of a two-dimensional nature.
I?igure 7 (b) illustrates such a disturb~~ surface.

The disturbance potential in the two-dimensional regtionis
given bv.

‘#(z, z)=av[z—z2+/3(z-zJ]
P

whero the lower surface of the body lies in the z=%’ plane
md the leading edge of the deflected area G in the x=m
plane.

ForwardMocfIcone

Intersection of the fonmrd ---’
Mach cone with the
rwfongulor body

\/)

(o) “NY.
(a) Tho forward hfaoh cone from a point on the upper eurface of a

rectangular body.

lM3uliE 7.— Rectangular body parallel to free-stream direction.

—

~

—x IY=Y2

(b)

(b) Bottom view of rectangularmb:~~titi defleoted area on the lower
.

Fxmnm 7.—Contiiued.

.
j - ‘“-

..

1’

I “\

I

L ,- Forward Moth cone I
z“ &+y,z)

1

I , ,.7.
/

I

L ‘;/. .’-’
//

“-- Oeflected oreo
,’

x L----- Inlersect(on of the forward Mach

I (q. cone with the side of the body .~

(c) Side view of rectangular body and the forward Maoh cone from the
point (Z,y,z) .

FIGURE 7.-Concluded.

A point on the upper surface which has only the *d-
imensional flow in its forward Mach cone is illustrated in
.fi.gure7 (c). The disturbance potential for this point is
(from eq. (18)) given by

Upon performing the indicated integrations the preceding
expression becomes

@(Z,y,z)= –
uv[&z2-19(z —zJ]+dv[z—z2—/3 (z-zJ]

2p 2@

which reduces to

@(z,’y,z)=o

This result is a demonstration that ‘the digturbancea in blind
spots do not contribute to the potential.

The scalar potential resulting from the disturbance pro-
duced by a nonplanar body can also be obtained by use of
equations (47) and (48) provided that the necessary values
Of ~, b@/b@, @’, and b@’/bnh M(3kllOWL k dealing With
planar bodies +’ could be chosen so that

+–-+’+)

and thus equation (47) is reduced to equation (50). Simi-
larly, @’. could also -be chosen so that

and thus equation (47) is reduced to equation (5I). Un-
fortunately, for nonplanar bodies, choosing @ equal to @
does not make a@’/bn~* known as was the case for planar
problems and, similarly, choosing a@’/h** equal to —a@@nb
does not mdce ~’ known. Certain problems esist in which
~’ can be chosen so that@ can be writtan as a simple integral.

INTERZECXINGPLANES
.

Many problems concerning nonplanar bodies deal with
disturb-m~w produced by &o in-tiecting planes parallel
to the free-stream direction. In this section, methods of ‘
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solutions for tvvo planes intersecting at various angles me
given. The component of velocity normal to the surface is
assumed to be known.

Perhaps the simplest case of two intersecting planes occur-a
when the planes inte~ect at right angles. It is desired to
fid the potential in space rasulting from the disturbances
produced by the two intersecting plan-. This type of
problem could represent an isolated cruciform tail with
supersonic leadin’g edges undergoing various motions.
Problems of this type have been solved in references 11 and 12.
The axes are chosen so that y=O and z=O are the disturbing
planes (see &. 8). When y and z are positive, equation
(18) becomw .

The surface S, has been tdcen to be the disturbing surface;
thus, S3 is the part of the y=O plane (z positive) bounded
by the 2=0 line in the y=O plane and the forward Mach
cone from the point (z, II, z). Similarly, S4is the part of the
z=O plane (y positive) bounded by the y=O line in the z=O
plane and the trace of the forward Mach cone from the point
(z, y, z) (see fig. 9).

known and that d(&O+,t) and @(&q,O>)are unkno& The
integralscontaining @(.f,O+,~)and @(&T,O+)canbeeliminatedby
several applications of equation (46). Equation (46) is
applied to the volume on the left-hand side of the y=O plane

(y =0 plork

I

DNmbmg wfoce
/

(z= O p’one)
/1

. k;:~

~GURE S.—Two disturbing surfaces intersecting at right angk%.

enclosed by the forward Mach cone from the point (z,v,z),
the y=O plane, the z= O plane, and an arbitrary surface
upstream of the disturbance (see fig. 10). The result of
applying equation (46) to this volume is

The surface SI has been taken to be the y=O plane (z posi- “
tive) and the z=O plane (y negative); thus, &is the part of
the z=O plane in the forward Mach cone from the point
(z,y,z) (see fig. 10). Adding equations (56) and (66) yields

——. . .—. . . . . .

(!!.,x
-- ;... .

Dntu ‘“

Wrb3r(y=o 0n8)

L

“A
Irurtt Inu
Inf (Xy,z)

(67)

-Mach cone
LA- IL.

t

/’ I
x

I?mmm 9.—l@3ione of integration for equation (55).
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The potential function ~’ ($,T,~)is chosen so that

#’ (t,–%r) =+(’%W)

where a is positive. Ii this case,

&$’(~,o-)r)_ M&o+){)
av ‘– bv

and equation (57) reduces to

(58)

Since ~’(f,q,t) is related to @(&q,f) the only unlmomn in the
preceding equation is 4&q,0+). The region of k-tion
Sb becomes the part of the z=O plane (z negative) in the
forward Mach cone from the point (z,y,z) obtained by re-
flecting the disturbing surface in the z=O plane (z positive)
through the z=O plane (see fig. 10).

The problem being considered is one in which the normal
derivatives of the potential function are lmown on two plahea
parallel to the z-axis and are intersecting at right angles.
The point (Z)y,Z) has been restricted to positive values of
y and z. For the present, consider the problem of finding
the potential above the z= O plane when the derivative of

k

\–.
. l’:::;

~ \ < \
,.,. i

~,\ Reflection of tti ~,q
disturfxng surface :‘ ‘ -%.q
in the z = O @ones . .,

‘i., Ihrough they = O ~ .,,

“i,
‘\
\

—Y

1. \ -J
Fmum 10.—Regions of integration for equation (56):

the potential function with respect to z is known on the 2=0
plane, the derivative of the potential function with respect
toy is discontinuous across the y=O plane, and the potential
is zero a iinite distance upstream of a given point. From
equation (22), the potential for this problem is given by

where SOis the part of the y=O plane above the z=O line
inside the forward Mach cone from the point (z,y,z), and S’l
is the part of the z=O plane inside the forward Mach cone
from the point (z,y,z). J?or positive values of y and z,
equation (59) reduces to equation (58) if ~’ (&7,0+) is assumed
to be the true value of @(&q,O+) when ~ is negative. Since
in the original problem @(f,q,~) wti not defined when q was
negative, nothing is violaiwd if it is now defied as being
& (f,q,f) in the region where q is negative and t is positive.
The problem in which the normal derivative of the potential
function is known on two planes parallel to the z-axis and
intersecting at right angles has, therefore, been changed to
the problem in which the derivative of the potential has a
Jmown discontinuity across the y=O plane (z positive) and
the normal derivative of the potential is known on the z=O
plane. Note that the potantial function still remains unde-
fied below the z=O plane.

Since the potential function is undeiined below the z=O
plane, it can now be defined so that the resulting potential
function is symmetric with respect to the z=O plane. De-
iin.ingthe potential belo,w the z=O plane so that

W,~,a) =@@,q,—a)

yields the desired symmetry. The result of applying equa-

tion (46) to the region below the z=O plane tilde the forward
Mach cone from the point (z,y,z) is

(60)

where S6 is the part of the y= Oplane (z negative) inside the
forward lMach cone from the point (x,y,z). In applying
equation (46) to the region below the z= Oplahe, the surface
SI had to be folded over the part of the y=O plane (z nega-
tive) across which ZY@q was discontinuous in order to be
able to apply equation (46) to this region. Equations (58)
and (60) can be combined to yield
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Equation (61) contains only integralsof known expressions
and it is, therefore, the solution to the problem of two plana
intersecting at right angles parallel to the x-axis where tlu
‘normal derivative of the potential function iaknown on boti
planes. Figure 11 shows the cross section of the distribution
of veloci~ normal to the surfaces for a problem as repre
sented by equation (55) and its solution as given by equatiol

(61). Note that bd(~jo+) (Tnegative) in S, is the reflectiol

in SS (~ positive) across the ~= o plane. This con~tio~
suggests that the result given by equation (61) could also bf
obtained by utilizing the concept of reelecting surfaces.

The mathematical derivation required for finding solutions
to problema consisting of two planes paraIIel to the z-axis
intersecting at various angles can be reduced by making uq
of the concept of the reflecting surfaces. For this reasbn, the
result given by equation (61) is obtained by use of reflecting

z
1

. .

.

-Y

I
-.

(o)

M 1
w

(a) Original problem (equation (56)).
. (b) Solution to problem as given by equation (61).

FIGURE 11.—A cram section of the distribution of the velocity oom-
ponent normal to the z= O and the Y=O plan- represented by
equations (55) and (61).

surfaces. The pot~ntial function can be separated into two
parts, +1 and h, satisfying the following boundary conditions
on the disturbing surfaces:

a~(:,o+,r)=a+(t,o+,r)
aq aq

A cross section of these boundary conditions is shown in
figure 12. Only the potential function +1is treated in detoil
since the boundary conditions for @l and ~ are of the same
type. The normal derivative of & ia zero on the q=O
plane; thus, the n=O plane can be considered as a reflecting
plane. The potential function 41is, therefore, the potentiol

hd(&~@+) which ~ symmOtriCresulting from a distribution of a ~
.

W1(.%T,O+)with r’espect to the q= Oline and has the value of
a~,

.when q ia positive. Figure 13 illustrates such a distribution.
The problem of iinding @l has been reduced to o planar
problem which m be solved by use of equation (5o).

Equatioq (50) was obtained by defining the potential
below the z= Oplane so that the tital potential function was
symmetric with respect to the z=O plane. This result
caused the derivative of the potential function with respect
to ‘z to be antisymmetric with respect to the z=O plane.
Figure 14 illustrates the distribution of the normal derivative
of the function across the z= O plane. The problem of
evaluating the potential function @l has been reduced to a
planar problem. Similarly, the problem of evaluating the
potential function & can be reduced to a planar problem,
Figure 15 illustrates such a procedure. The original poten-
tial function is the sum of @l and & Equation (61) follows
bm the preceding results for d, and ~. The addition of
& ,and &is illustrated by figure 16.

The concept of reflecting surfaces is now utilized to find the
potential resulting from two disturbing surfaces parallel to
the x-axis and intemecting at an angle of 45°. The axis is
chosen so that the x-axis lies alomg the intersection of the
disturbing surfaces and one of the disturbing surfaces lies
in the z=O plane (see fig. 17). The potential function ~ is
divided into two parts, d, and h. The boundary conditions
on ~ and & are similar to the corresponding potential func-
tions used for the disturbing surfaces intersecting at 90°.
Figure 18 ilhmtrates the boundary conditions for +, and &.
The surfacw on which the normal derivative of 41 is zmo
can be considered as a reflecting surface. This consiclmotion
leads to the came distribution of the normal derivative of
& on the n=O plane as is given on the f= Oplane. Figure
19 illustrates such a distribution. The problem of fuding
+, for two disturbing surfaces intersecting at 45° has been
reduced to a problem of two surfaces intersecting at 90°.

.
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$*

Fmmm 12.—A cross seotion of the. distribution of velocity normal to the disturbing surfaces for the potential functions ~, +1, and A.

l?mmm 13.—The reduction of +1to a planar problem.

z z

Y444+ ftlf+?*4 “Y =

Fmmm 14.-The normal derivative of the potential function acrom the z==Oplane obtained by applying equation (50) to a planar problem.

The solution of ~, can be obtained from equation (61).
Figure 20 shows the surfaces across which the normal,deriva-
tive of +1is discontinuous. Since & and ~ have the same
type of boundary conditions, then & has a solution as illu-
stratedin figure 21. The original potential function @ is the
sum of +1 and 6; therefore, @ can be found bj- considering
surfrices of discontinuity m illustrated in figure 22. The
potential function @ can be evaluated by use of equation
(22), because no surfaces acrosa which @ is discontinuous
exist and the values of A@f@J are known across all sur-
face9 of discontinuity.

Another simple case of two disturbing surfaces parallel b
the z-axis occurs when the surfaces intersect at an angle of
(.30°. The potential function @ is divided into two parts,
#l and ~. The boundary conditions on d, and h are similar
to the corresponding functions used previously. Wgure 23
shows a cross section of thcae boundary conditions. By use
of a reflecting surface, the function 41can be represented by
the boundary conditions as shown in @e 24. The func-
tion +1is undefined for 240” of the total angle around the
x-axis. The function &. is deiined as shown in @e 25.

Since no surfaces exist across which ~ is discontinuous, the
function @l can be evaluated by using equation (22). Simi-
larly, & can be defined ds shown in figure 26. The sum of
~ and ~ is illustrated by figure 27. The potential function
@ can be found by using equation (22).

Ii the preceding paragraphs, methods have been fo&d
for determining the potential resulting from two plane dis-
turbing surfaces parallel to the stream direction intersecting
at certain angles. The same method can be used to find
methods for deterrninhg the potential resulting from two
plane disturbing surfacw intersecting at various other angles.

ROWG T~S WITH MULTIPLERECTANGULARFINS

The methods derived in the preceding section are used to
find the surface velocity potential, the pressure distribution,
and the damping in roll of rolling tails consisting of four,
six, and eight rectangular fins. For comparison, these same
quantities are also pre9ented for the planar tail conjura-
tions consisting of one and two rectangular fins. An illus-
tration of the tails treated is shown in @me 28. The.
analysis is limited to tail configurations having surfaces of
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.Fxcmm 15.—An illustration of the reduction of A to a planm problem.
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FIGUEE16.—An illustration of the addition of .#Iand &

vanishingly small thickness’ and of zero camber. The I
f&e facing the negative

investigation is also limited to the range of Mach numbers regions a9 follows:
for w~ch the region of interferauce between the adjacent
fins do~ not tdfect the fin tips (see@. 29).

TAILCONSISTINGOF ONE FIN

The pressure distribution and the velocity potential on
the surf-m of rolling tailsmade up of one and two rectanguhu I
iins can be obtained from the resuh of reference 13. The
pressure and potential for the tail consisting of only one fi
can be found by transforming the ti of ,roll of the tail
consisting of two reotanguku h.

The tail consisting of one fin is divided into regions as
shown in figure 29 (a). The velocity potential on the sur-

For region I,

y-direction is given for the various

1

K=)JFx=@l
For region II,

+(Z, Z)=y

(62a) ‘

(62b)
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/

,VekdydMfibhmIKm-mi

Y

FIGURE 17.—Position of coordinate axea for disturbing surfacea
intersecting at 45°.

,

.
Y:

,

For region IV, (note that the potential in region IV is the
potential in region I plus the potential in region Ill minus
the potential in region H),

L lg++l+’+”)+#J(z,z)= = sin-

K?+z)w-z)- z
;(y-.-~)j(z)(z(~;j;%1%l

(62d)

The pressure-diihrence coefficient is given for the various
regions as follows:

/.

/ !4
+

‘1
-Y , , -Y

FIGURE18.—A oross seotion of the velocity distribution on the disturbing surfaces for the funotions ~ and A for the
disturbing surfams intersecting at 45°.

Az

/ftttt
“Y -Y

I . I
FIGURE19.—Refle&lon of the normal derivative of $1 on the y=O plane.

.
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TTtTrrn, ttt~
L

v

Y

1. ‘.<.
FIGURE20.—A cross section of the surface%of discontinuity which can be used to evaluate the potential function +1for

two surfaces ‘Me-ding at 45°.

For region I,

For region II,

AC,=%
flv

For region III,

@=*[’fi-’@+m

For region IV,

A~p.&[@l~~+@@+

m-JmFw4

(63a)

(63b)

(63c)

(63d)

TAILCONSISWGOF TWO FINS

The tati cOIISiS@ of tWOfins (fig. 29 (b)) has the same
potantial and pressure distribution as a rec@ngulm rolling
wing and can, therefore, be obtained from the results of
reference 13. For each tail consisting of two fins divided
into regions as shown in figure 29 (b) the pressure and pokm-
tial in regions I and II are the same aa the pressure and po-
tentials in the corresponding regions for tails consisting of
one iin.

TAILCONSIS~~OFFOURFINS

Each fin of the tail consisting of four fins is divided into
regions as shown in figure 29 (c). The pressure and poten-
tials in regions I and II are the same aa the pressure and
potentials in the corresponding regions for tails consisting of
ei&er one or two fins. The regions III and IV are Mected
by the interaction between adjacent fins. The potential in
region IV is madp up of a combination of the potentials of
regions I, II, and HI. Thus, the only real problem is the~
determination of the potential in region III.

The po~tial in region III is not aflected by the tip and
is, therefore, the same potential = would be obtained if the
h were infinitely long. With the coordinate axes chosen

.
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as shown in figure 28 (c) the point (x,y,z) is restricted to be used to &d the potential in the part of the region of
values of y wliich are negative while the values of z are interaction which is not aifected by the tip. -
restricted to positive values. Note that for a tail with The velocity component gormal to the iin in the z=O
finitely long &s, the potential at a point (x,y,z) in the
region of interaction is independent of the disturbances
produced at points located so that their projection on the
~z-plane does not lie in the second quadrant. The general
method previously derived for finding the potential resulting
from two plane surfaces intersecting at right angles can thus

/“%-Y =

plane is given-by -

@.(x,fl,o+) = –Py

and the velocity component normal to
plane is given by

dlu(z,o-, z)=pz

\

/

the h inthe y=O

llmmm 21.—A moss section of the surfaces of discontinuity whioh can be used to evaluate the potential function A for
two planes intenwting at 46°.

2=
4

+ .

z

&

Y

FIGURE22.—The addition of #’ and A to obtain the potential funotion + for two surfaces intersecting at 45°.
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+

?

‘Y

FIGURE23.-A cro~ .wotion of the boundary conditions of the funotions +1and A for two disturbing surfaws inte~oting at 60°.

/

—

z

3ttt+f~
●Y

\

FIGUREU—The reflection of +1through one surface.

?

.

FIGUEE25.—A method of deiluing +1so as to eliminate discontimdties in the potential funotion.
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FIGUEE26.—A method of detig & so aa to eliminate discontinuities in the potential function.

I

-Y +

r

.

FIGURE27.-The addition of +, and &
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.
\

(a)

z

‘1
.—

+Z

‘K -*
Y Y

@x
(b)

Q x

(c) +Z

tz

[e)

(a) One fin. (b) Two fins.
(o) Four tlna (a) six fins. ,

(e) Eight lb.

FIGURE 28.—Typs of tails treated.

Figure 30 illustrates this type of normal-velocity distribution,
and figure 31 illustrate a cross section of the surfaces of
normal-velocity discontinuity, which previous results show
can be used to obtain the potential in the part of the region
of interaction which is not aflected by the tips.

Note that in iigure 32 the discontinuity in the normal
veloci~ across the z= O plane is the same type as the dis-
continuity in they= Oplane. Thus, if the potential resulting
from this type of discontinuity (see @. 32) is known, then
the potential resulting from any combination of discontinu-
ities of this type can be found. The potentitd for this type
of distribution is denoted by h. By the “useof cylindrical
coordinates, as shown in figure 32, the potential at the point
(z, P,@ w be expressed in terms of,@ by “

)#@,P,@= ‘#&W@ – <% P,O-; (64)

Equation (64) follows from figurw 31 and 32.
The potential function & was evaluated by use of equation

z

I
I

!3-
\.

\I /.
\

\/
II \/ =

/\
/\

/’~ \.
/

/ x
(a)

z

\
\

\\ I /
\\/

It /<,. .=
/ \

/’~ ‘,
/

/ *X
(c)

z

I

.
‘\ \\ I

\
\

\
II ‘.

~)

\
\

—x

1
\ /’
\\ I /

-Mach line frm’
\/ cdjocent fin

\A/

It // \“- ‘m

\
,/’ m \

.-
(d)

/’/”— l’\— \
---Mach Iiw/ I .x .

(e).
(a) One fin. (b) Two fins,
(o) Four fins. (d) Sis fins.

(e) Eight fins.

Fmmrm 29.—Regions of similar +sturbancea for tails c&sisting
rectangular llns.

(50) and is giV~ as fo~ows:
I

d44%P,0= -+[.-+

of

2xpp Cos o sin-l
- (4

pp COBo

)~2_pp2 fi2 e –

2p~p2 Cos e sin etan-l(.=)1““)



A VEM2TOR STUDY OF LRWMRUED SUPERSONIC ‘FLOW AI’PLACATIONS TO NONPIANAR PROBLEMS 867

l?or~si9sT,

f#o(%P,6)=--$[.-+

p’p’(1 –2 Cos’ e)ln ‘ ‘p +
X+JW

2xpp Cos 0 sin-l
(4

Pp cos e +

)Z’–B’p’ sing 6

2/!3’p9sin e Cose tall-l(42%’)1‘“b)
From equations (64) and (65), the potential function in the

region of interaction, which is not aifected by the tips, is

given by the following equation for ~s os m

{
f#J(z,p,e)= –$ 2p2p2(l– 2 COS2e)hl BP +

x+ Jmfi

(2/3~p9Cos e sin e tan-l+!UL. ‘

@=im

(66)

z

t

FIGURE30.—A cross motion of the normal-velooity distribution on two
plane surfaces representing the region of interaction for a rolling
tail with four ti.

The potential in region III of the b surface is a speciaJ

()
case O=; of the preceding equation. Thus, the potential

in region Ill is given (ii Cartesian coordinates) by

From equation (67) the preesmredifbrence coefficient is
found to be

(6S)

. z

I

1
t t + & , 4 t t t -Y

I
l?mum 31.—A cross section of the velooity discontinuity distribution

used to iind the potential in part of the region of interaction for
a tail of four iins.

z

1’
Fmurm 32.—A orosaseotion of the velooi~ discontinuity distribution

associated with the function .$Jfor a tail with four fins.
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As previously stated, the potential in region IV (see fig. 29)
is a combination of the potentials in regions I, II, and III.
As9ume that the iins are infinitely long. In this case only
two regions @ and ICI) exist since regions I and IV are
affected by the tip. The effect of the tip can be taken into
account by adding a potential which has zero normal velocity
on the fin and the negative of the pressure of the tite fi
in the plane of the fin outboard of the tip. The value of
such a potential on the iin is given by the diiTerencebetween
the potentiaI of region I and the potential of region II. (This
potential is only the eilect of the tip on a semi-infinite rolling
wing.) Thus, the potential in region IV is the potential in
region 131plus the difference between the potential of region
I and the potential of region II. Mathematically, the po-
tential in region IV is given by

1&z-Ma’=a-22h.+Em
(69)

From equation (69) the pressure-difference coeflkient ~
given by

4(4-’)(’-:+;)1 (70)

TAILCONSISTINGOF SIX FINS

The pressure and potentials on the surface of the tail con-
sisting of s-mfins can be obtained in a manner similar to that
used for the tail consisting of four fins. The pressure and
potentials in regions I and H (fig. 29 (d)) are the same as the
pressure and potentials in the corresponding regions for tails
consisting of one, two, or four fins. Regioti III and IV are
affected by the interaction between adjacent iins. The po-
tential in region IV is made up of a combination of the po-
tential in regions I, H, and ?It; therefore, the main problem,
m for the case of four iins, is’the determination of the poten-
tial in region III.

The potential in region HI is the same as the potential for
a tail consisting of six infinitely long fins. The induced ve-
locities normal to two of the planea,of the h are illustrated
in figure 33. For &o plane surfaces parallel to the stream
direction and intersecting at an angle of 60°, the potential
in region III can be obtained by a distribution of discontinui-
ties in velocity as illustrated in figure 34. Note that the
potential in region III cau be made up of a combination of
the potentials from a velocity discontinue@ as shown in
figure 35. The potential from this type of discontinuity is
denoted by ~. By use of cylindrical coordinates as shown
in figure 35, the pohmtkd at the point (x, P,L9) can be expressed
in terms of @Oby

Equation (71) follows from figures 34 and 35.
The potential function b was evaluated by use of equation

(50) and is given by the following equation for OSOS w

&z,p,e)=– ‘p;se(z+ sin e) (72)

J?romequations (71) and (72) the potential function in the
region of interaction, which is not aflected by the tips, is

given by the following equation for ~s 8s%:

@@!,P,e)=~g[J3(l–2 Cos’8)+2 Cos13sine] (73)

The potential in region HI of the h surface is a special

()
case o=; of equation (73). The potential in this region is

given (in Cartesian coordinates) by

.

(74)

FIQUFW33.~A crosssection of the vslooity dfatribution normal to the
planes of t?o fins of a rolling tail oonskting of SLYfins.

z

Y

Frcmmz 34.-A cros seotion of the velocity discontinuity dfatrlbutlon
used to find the potential in part of the region of interaction for
atailof six fins.
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I?rom equation (74) the pre8sure4flerence coefficient in
region III is found to be zero.

The potential in region IV is a combination of the poten-
tials in regions 1, II, and III; this can be shown in the same
way as the potential in region IV of” the tail consisting of
four fim was shown to be a combination of potentials from
other regions. Specifically, the potential in region IV for
the tail cm.wistingof six fins is the potintial in regjon III
plus the difference between the potentials of region I and of
region II. MathematicaUy, the potential in region
given by

rvis

(75)

From equation (76) the prcssurediilerenc,e coefficient is
given by

,—

.O,=-*lZCOS-,J(;-Z)+J(:-.)(.-:+;)]
(76)

Tm CONSIS~GOF~GHTFINS
The pressure and potential on the surface of the tail

consisting of eight fins can be found by utilizing the potential
functions ~ used in tiding the pressure and potentials on
the surface of the tail consisting of four and six ii.ns. The
pressure and potentials in regions I and H are the same as
the pressure and potentials for the corresponding regions of
the other tails. The potentials in regions ICC,IV, V, and
VI (see &. 29(e)) are ailected by the interaction between
adjacent iins. Since the potentials in regions V and VI are
combinations of the potentials in the remaining regions, the
main problem is to find the potentials in regions III and IV.

The potentials in regions-III and IV are the s-e as the
potential for a tail of eight inii.nitelylong h. The induced
velocity normal to two of the planes of the iins is illustrated
in figure 36. From the results for two plane surfaces inter-
secting at an angle of 45°, the potentials in regions III and
IV can be obtained by a distribution of discontirmities in
velocity as illustrated in &ure 37. The potential rqwlting
from the distribution of &continuities in velocity as illus-
trated in figure 37 can be obtained from a distribution of

z
4

n
P

e

1 1 4 , 4* t t t

t
— * -Y

m

FIGURE35,—A cross section of the velo~i~ discontinuity distribution
associated with the funotion A for a tail of six fins.

&continuities as possessed by the potential function ~
used in connection with the four-tied tail. The potential
function ~ used in connection with the four-finned tail
-m.s evalua~d only in the region affected by the root
sections of the fine. For the tiase of the eight-finned
td, interaction occurs between adjacent fins in regions
which are not ailected by the root sections of the b.
The potential function h of the four-tied tail in the region
not aflected by the root section must be lmown. In this
region, the potential functiom ~ for the four- and six-tied
tails are the same.

From figures 32 and 37 the potential function in the region
of fin interaction which is affected by the root sections of

the fins is, for ~SOS$

)W,P,O=-40(W,6?)+4W(w-: –
-~) (%,,0+;)40 (z,P,e , +40 (77)

z

“Y

Fmunn 36.—A CIKISSsection of the normal velooity induced on the
planes of two &s of a rolling tail consisting of eight ti.

f

T
FIQUEE37.—A cross seation of the velooity discontinuitieg whioh oan

be used to obtain the ~otential in the region of interaction between
adjacent fins for a tail consisting of eight fins.
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where ~ is given by equations (65).
The potential in the part of the region of interaction which is tiected by the root section is (from eqs. (65) and (77)),

for~50S$

(78)

()The potential in region III is a special case f?=; of equation (78). Setting o=; in equation (78) yields (in Cartesian

coordinates)
2pz

( )
~(z,o-,z)=w z sin-’ ~–z~sin-l ;&+bz tan-’d&

From equation (79) the pressurediflerence coefficient is found to be given by

(79)

(80)

By inspection of iigures 35 and 37 the potential fuhction in the region of@ interaction, which is not aflected by the

root sections of the iins, is, for ~ 50 s~>

(81)

where h is given by equation (72). ‘Substituting equation (72) into equation (81) yields (remember that dJOb zero

upstream of the Mach cone from the v--), for ~ S o~~~
.

[( ) –1 PP2 ~_2*9@- .
@(z,P,e)=y

1–7 ‘io+c>o ‘Pp’coso ‘o 2 (;

.

{

Qqsine-cose)

~(cosO+sinO) ‘;zx<fi
.) {

o; if z</3p sin 0

—= 00s 0

1

(82)
–%ke-c@);ifz>&le-cose) B

‘a
Z—pp sin e; if X>pp sin 8

()The potential in region ~ is a special case tl=~ of equation (82). Setting o=; in equation (82) yields (in Cartesian

coordinate) ,
4(Z, o-, Z)=% [(1 – @)z+@l (83)
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From equation (S3) the pressure-differenm coeilicient is found to be given by

ACP=~(l-fi (84)

The potential in region V is the potemtial in region IV plus the difference between the potential in region I and the
potential in region II; thus, from equations (62a), (62b), and (83), the potentiaI in region V is found to be given by

2P[W-?3+WW-K%-ARGG31 ’85)+(Z,o-,z)=;

From equation (85) the pressure-difference coeiiicient is found to be given by

At,=-%[5-2fi-llF?+Jmd (86)

The potential in region VI is the potential in region Ill plus the diiferwme between the potential in region I and the
potential in region II; thus, from equations (62a), (62b), and (79), the potential in region VI is found to be given by

[’ F/3 ;–z
,+(Z,O-,Z)=* -z cos-’”~zy—x&J sin-l &’+Bz‘-’&+zz ‘b-’ z –

From equation (87),

KW)JGEF31
the pressuredifference coefficient in region VI is found to be given by.

(87)

DISCUSSIONOF RESULTSFOR ROLLINGTAILS

Illustrative plots of the chordwise and spanwise pressure distributions across one fin for tails with various numbers of
fins are shown in @e 38. Figure 39 shorn illustrative plots of. the spanwise loadings on one h for tails made up of
various numbem of iins.

The potential function #10used in finding the pressures and potentials for the tails consisting of four, six, and eight iinz
could be used in iinding pressures and potentials for tails consisting of any even number of fins provided that the region of
interaction between adjacent h does not aflect the tip. The restriction on the region of interaction causes the range of
validity to decreaze as the number of fhs ie increased. The range of validity could be extended, however, by use of a pressure

or potential cancellation method such as gimn in references 14 and 15.
From the potential, the damping in roll per fin was calculated. Table I presents the results of these calculations. Figure

40 presents the variation of the damping in roll per fin with Ap for tails made up of various numbem of fins. For a given
Mach number @ constant), figure 40 shows the variation of the damping with aspect ratio. Figure 41 presents the variation
of the damping in roll per fln with Mach number for tails consisting of various numbers of iins with a fia aspect ratio of 1.5.

LANGLEY ADRONAmCAL LABORATORY,

NATIONAL ADVISORY

LANGLEY F’mLD,

COMMITTEE FOR AerObatiCS,
VA., October36, 1)61 .
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TABLE I

D&Il?LNG-IN-ROLL COEFFICIENT PER F~T

Number
of fills I Valid for

2 I
4 I 4 [ 1_—

~A3@ –+% (l+8A&48A’@+64A’J99 1 I AL?z1
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